Alignment of NCTM Standards (2020) for Secondary to edTPA Rubrics

Alignment is based on how well edTPA Secondary Mathematics Assessment Handbook (September 2016) rubric criteria, rather than task directions, provide evidence supporting selected components of the NCTM Standards (2020) for Secondary.

Definition of edTPA Rubric Level of Support

Limited Alignment

The edTPA rubric provides partial evidence for the standard component. All parts of the component at the NCTM Reviewer Rubric Level 3 are not addressed in edTPA rubric Level 3.

Moderate Alignment

The edTPA rubric provides sufficient evidence to meet the standard component. All parts of the component at the NCTM Reviewer Rubric Level 3 are addressed in edTPA rubric Level 4 and above.

Strong Alignment

The edTPA rubric provides strong evidence to meet the standard component. All parts of the component at the NCTM Reviewer Rubric Level 3 are addressed in edTPA rubric Level 3 and above.

Alignment Table

Standard Component	edTPA Rubric Number and Level of Support
*2a) Problem Solving. Candidates demonstrate a range of	
mathematical problem-solving strategies to make sense of and solve	1 Limited
nonroutine problems (both contextual and noncontextual) across	I – Ellilled
mathematical domains.	
*2b) Reasoning and Communicating. Candidates organize their	
mathematical reasoning and use the language of mathematics to	1 – Limited
express their mathematical reasoning precisely, both orally and in	4 – Limited
writing, to multiple audiences.	
*3a) Student Diversity. Candidates identify and use students'	
individual and group differences when planning rigorous and	2 – Limited
engaging mathematics instruction that supports students'	3 – Limited
meaningful participation and learning.	
3b) Students' Mathematical Strengths. Candidates identify and use	
students' mathematical strengths to plan rigorous and engaging	3 – Moderate
mathematics instruction that supports students' meaningful	12 – Limited
participation and learning.	
3c) Positive Mathematical Identities. Candidates understand that	
teachers' interactions impact individual students by influencing and	
reinforcing students' mathematical identities, positive or negative,	6 – Limited
and plan experiences and instruction to develop and foster positive	
mathematical identities.	
4b) Engage Students in High Cognitive Demand Learning.	
Candidates select or develop and implement high cognitive demand	1 – Limited
tasks to engage students in mathematical learning experiences that	7 – Moderate
promote reasoning and sense making.	

Standard Component	edTPA Rubric Number and Level of Support
4d) Use Mathematical Representations. Candidates select and use	
mathematical representations to engage students in examining	9 – Strong
understandings of mathematics concepts and the connections to	
other representations.	
4e) Elicit and Use Student Responses. Candidates use multiple	8 – Limited
student responses, potential challenges, and misconceptions, and	
they highlight students' thinking as a central aspect of mathematics	
teaching and learning.	
4f) Develop Conceptual Understanding and Procedural Fluency.	1 - Limited
Candidates use conceptual understanding to build procedural	5 – Limited
fluency for students through instruction that includes explicit	7 – Strong
connections between concepts and procedures.	7 – Strong
4g) Facilitate Discourse. Candidates pose purposeful questions to	8 – Moderate
facilitate discourse among students that ensures that each student	
learns rigorous mathematics and builds a shared understanding of	
mathematical ideas.	
5a) Assessing for Learning. Candidates select, modify, or create both	
informal and formal assessments to elicit information on students'	5 – Moderate
progress toward rigorous mathematics learning goals.	
5b) Analyze Assessment Data. Candidates collect information on	
students' progress and use data from informal and formal	11 – 13 Collectively Moderate
assessments to analyze progress of individual students, the class as a	
whole, and subgroups of students disaggregated by demographic	
categories toward rigorous mathematics learning goals.	
5c) Modify Instruction. Candidates use the evidence of student	10 – Limited
learning of individual students, the class as a whole, and subgroups	
of students disaggregated by demographic categories to analyze the	
effectiveness of their instruction with respect to these groups.	15 – Limited
Candidates propose adjustments to instruction to improve student	15 – Linned
learning for each and every student based on the analysis.	